Opportunities and Challenges for Plug-in Electric Vehicles

Contents

Technical Information

- Definitions
- Transportation Technologies
- Plug-in Electric Vehicles
- PEV Charging
- Code and Standards

Opportunities

- Value Proposition
- Benefits of Plug-in Electric Vehicles

Challenges

- Collaboration PEV Stakeholders
- Customer Concerns
- Market Projection
- Electricity Grid Impacts
- Battery Technology Development

Technical Information

Definitions

Comparison of Transportation Technologies

	Electricity	Gasoline	CNG					
Fuel Cost ¹	\$0.75	\$3.50	\$1.91					
Fuel Economy	50+ mpg	27.5 mpg	25 mpg					
Infrastructure	Extensive	Extensive	Very Limited					
Vehicle Cost	+\$8-12k	Baseline	+\$8-12k					
Emissions; CO ₂	< 200 g/mile	400 g/mile	300 g/mile					
Emissions; other	NOx, SO ₂	VOC, NOx, PM	NOx					
Pros	No tailpipe emissions High efficiency and performance Electricity widely available and inexpensive	Known technology	High energy density and quick refueling Domestic fuel sources available					
Cons	High battery cost Long refueling / charging times Some additional infrastructure required	Limited availability in long term	Safety concerns Volatile price Lack of roadside infrastructure					
Electric vs. Gasoline								
No Tailpipe Emissions Utility Company OPEC 100+/- Mile Range Hours to Recharge 2 cents per mile								
Household Pump * Source: From Clean Cities Alternative Fuel Price Report July 2010								

PEV Introductions

Key Point: Nearly every automaker has a plug-in vehicle planned over the next 3 years.

PHEV or EREV

ALL ELECTRIC

PEV Comparison and Performance Characteristics

	Chevrolet Volt	Nissan Leaf	Tesla Roadster	
Launch date	November 2010	December 2010 In Production		
MSRP / tax credit	\$41,000 / 7,500	\$41,000 / 7,500 \$32,800 / 7,500 \$109,000 /		
Lease details	\$350/month, \$2,500 down, 36	\$350/month, \$2,000 down, 36		
	months	months		
Initial production #	10,000 (2011), 45,000 (2012) up to 60,000 capacity	Up to; 50,000 (Japan, 2011), 150,000 (TN, 2012), 50,000 (UK, 2013)	1,200 sold (July 2010)	
Type / # seats	Sedan / 5	Sedan / 5	Coupe / 2	
EV (IC engine) range	25-50 (260)	100 (N/A)	244 (N/A)	
IC engine	Gas / 1.4 liter / 74 hp / 55 kW	N/A	N/A	
Electrical motor	149 hp / 111 kW	107 hp / 80 kW	288 hp / 215 kW	
performance	273 ft-lbs / 373 Nm	210 ft-lbs / 280 Nm	280 ft-lbs / 380 Nm	
0 – 60 mph	9.0 s	11.5 s	3.9 s	
Battery capacity	16 kWh (10.4 kWh useable)	24 kWh	53 kWh	
Battery type	Li-ion, 220 cells	Laminated Li-ion	Li-ion, 6,831 cells	
Charge times	8-9 / 3 hrs	20 / 8 hrs	48 / 3.5 hrs	
Charge time	120V-12A / 240V-15A	120V-12A / 240V-15A	120V-12A / 240V-90A	
Battery weight (lbs)	375	440	992	
Vehicle weight (lbs)	3,790	3,400	2,723	

Nissan Leaf

Tesla Roadster

Charging Infrastructure Standards

Key Point: The industry has agreed up upon a single charging connection standard – SAE J1772

	Voltage	Max	Likely	Charge Time	Charge Time	Reference
		Current	Current	(average)	(full charge BEV)	
AC Level 1	120 V	16 A	12 A	8-12 hrs	16-20 hrs	Hair Dryer
AC Level 2	208/240 V	80 A	16-30 A	2-3 hrs	6-8 hrs	Clothes Dryer
DC Fast	Under developn	nent; target 80	% complete charg	ge in 10-25 minutes (500V, 100A, 50 kW)	Small Building

Level 1 can utilize a standard household outlet and stand alone cord set, but Level 2 requires a hardwired cord set into a special box with safety electronics.

Level 2

Electric Vehicle Supply Equipment (EVSE) Level 2 High Level Description

- A Level 2 Electric Vehicle Supply Equipment (EVSE) is an alternating current (AC) electrical pass-through device that provides added user protection for providing power to plug-in Electric Vehicles (EV's). An EVSE is so named, defined and mandated from the definition found in the National Electric Code[®] Article 625.2f and is part of the larger Electric Vehicle Charging System which also includes the EV's onboard charger (inverter and battery management system).
- An EVSE takes AC power from a supply circuit, offers protection, and then provides an SAE J1772[™] specified connector to the user. The user plugs this connector into their Electric Vehicle to deliver AC power to the vehicle's onboard charger.

DC Level 2 (Fast Charging)

- 125A, 208VAC or 100A 480 V 3-phase, 3-wire
- ~50kW, 400V output
- Direct access to battery while charging

Charging Infrastructure Options

- Electric Vehicle Supply Equipment (EVSE) functionality
 - Basic: Safety appliance incorporating customer operability
 - Smart: Additional control, access, measurement, and billing options
- EVSE sourcing options
 - Dealer option
 - Level 1 included with vehicle purchase
 - Level 2 option (basic)
 - Option for purchase/lease unit with vehicles
 - 3rd Party option
 - Independent companies with multiple EVSE options, including network management, access control, energy measurement, etc.
 - Utility option
 - Under consideration nationwide

Charging Locations

- Residential
 - Default charging
 - AC Level 1 or 2
 - \$500-2,000 hardware (L2)
 - \$500-\$1,500+ installation
- Workplace/Retail
 - 2nd most common location
 - AC Level 2
 - \$2,000-8,000 hardware
 - Similar range for installation
- Public
 - Retail, decks, curbside
 - AC Level 2, DC Fast
 - Similar costs for workplace (L2)
 - DC Fast Charging unknown

ELECTRIC POWER RESEARCH INSTITUTE

Codes and Standards

- SAE
 - J1772[™] Charging system and connector for AC and DC
 - J2836[™] Charging communication use cases
 - J2836/1 Utility / Smart Grid
 - J2836/2 DC Charge Control
 - J2836/3 Reverse Power Flow
 - J2836/4 Diagnostics
 - J2836/5 Consumer Interaction
 - J2847 Charging communication messages
 - J2847/1 J2847/5 Mapped to J2836
 - J2931 Charging communication protocol
 - J2931/1 General Info
 - J2931/2 FSK Over Control Pilot
 - J2931/3 Narrowband PLC (G3, ITU G.hn)
 - J2931/4 Broadband PLC (HomePlug GP)

- UL
 - UL2594 AC Charging System
 - UL2202 DC Charging System
 - UL2231 Personnel Protection
 - UL1998 Software Protection Systems
- NFPA 70 NEC Article 625
- FCC Part 15 EMI
- EPRI Infrastructure Working Council (IWC)
- NIST SGIP
 - PAP11
 - V2G PEVWG
- NEMA 05EV EVSE Section
- IEEE
 - 1547 Interconnection of DER
 - P1901 Broadband PLC
 - P2030.1 Electric Transportation Infrastructure
- National Petroleum Council Fuel-SITG Electricity as a Fuel

Opportunities

Value Proposition

Managing Energy Costs

Oil Dependency Imposes Significant Costs on the US

- Oil price spikes have contributed to every recent U.S. recession; according to the Department of Energy, oil dependence has cost our economy \$5 trillion since 1970 (\$580 billion in 2008).
- According to the Rand Corporation, U.S. armed forces spend up to \$83 billion annually protecting vulnerable infrastructure and patrolling oil transit routes.
- Global dependence on oil reduces the United States' ability to develop strong and effective foreign policy against nations that undermine local and global security.
- 40 percent of all U.S. CO₂ emissions are from the transportation sector, which would be largely unaffected by a nationwide CO₂ cap and trade program.

Promoting Energy Independence

Consumption, Production, and Import Trends (1949-2008).

Source: Energy Information Administration, *Annual Energy Review*, Table 5.1. (June 2008)

Sources of U.S. Net Petroleum

Foreign oil dependency:

60% of US oil is imported. 40% of US imports sourced from Persian Gulf, Venezuela, and Nigeria combined.

Helping Improve the Environment

Annual 4th Highest 8-hr Ozone Difference (ppb): PHEV middle case vs. base case

Source: EPRI/NRDC 2007 Impact Study

Helping Improve the Environment

Key:

Gasoline 2010 = 27.5 mpg; 2010 CAFE standards

Gasoline 2030 = 42 mpg; NHTSA / EPA proposed Greenhouse Gas and Fuel Efficiency Standards

HEV = hybrid electric vehicle

EREV = extended range electric vehicle

EV= electric vehicle

PEVs are not new... but this time it's different

- Technology
 - Plug-in *hybrid* electric technology
 - Improved batteries with higher energy density/longer range
- Marketplace
 - Driving factors include gas/oil prices, energy security, GHGs
 - Not just California
 - Broad support and incentives
- Customer Features
 - Instant torque
 - Preconditioning the cabin
 - Internet connected

Potential Job Creation

North Carolina / Florida companies with plug-in electric vehicle technology capability

Challenges

Key Challenges

Collaboration - PEV Stakeholders

Customer Concerns

Market Projection

Electricity Grid Impacts

Battery Technology Development

Plug-in Electric Vehicle Stakeholder Map

Customer Concerns

Factors of Concern Regarding Plug-In Electric Vehicles

PEV Market Penetration

Obama Administration has set a goal of achieving 1 million PEVs on the road in five years

Plug-in vehicle market penetration forecasts:

Source: Pike Research Credit: Stephanie d'Otreppe / NPR

Notes:

1. Includes hybrid vehicles

Transmission System Impacts

Maximum home arrival is 12% at 5 PM By 8 PM, 70% of drivers have arrived home

The same 2 million vehicles can be charged overnight with no increase in peak load

Source; Effects of transportation electrification on the electricity grid Marcus Alexander Manager, Vehicle Systems Analysis Workshop 4 – Plug-in Electric Vehicle Integration Issue July 15, 2009

This is the demand for 2 million simulated vehicles verses the demand for July 7, 2009; average load is 700W per vehicle

² million badly controlled vehicles can create a new peak This would be a serious disruption

Distribution Impact Considerations

- PEV Penetration Level
- PEV Concentration Level
- Electrical Characteristics of Chargers
- Charging Profiles (battery size, charge level & time)
- Network Location
- Coincident to Peak
- Smart Grid Enabled or Not Controllable

Source: EPRI EV Charge Profiles

Hours/Day

Connection of PEVs to the Electricity Grid

With digital technology, the grid grows smarter

Little has changed in the way utilities manage electric grids since 1882, when Thomas Edison opened his Pearl Street power station in lower Manhattan. Digital technology over the next few years, however, will create a "smart grid" that promises to transform utilities and customer habits.

Source: Duke Energy, U.S. Dept. of Energy, Pittsburgh Gas & Electric, The New York Times Graphic: Wm Pitzer, The Charlotte Observer

Battery Technology Developments

Figure 1: Specific energy and specific power of different battery types

Source: Johnson Control - SAFT 2005 and 2007.

KEY POINT: Among battery technologies, lithium-ion batteries have a clear edge over other approaches when optimised for both energy and power density.

Sources: Interviews with component manufacturers, cell producers, ther one suppliers, OEMs, and academic experts, Argonne Hational Laboratory, BCG analysis.

Note: Exhibit assumes annual production of 50,000 cells and 500 batteries in 2009 and 73 million cells and 1.1 million batteries in 2020. Humbers are rounded.

Battery Technology Developments

- ARRA goal 2 is to cut cost of batteries 50% by 2013 and eventually reduce the sticker price of an electric car to match gasoline counterpart
- Nissan and GM indicate current costs < \$750/kWh
- Cost expected to drop to \$250-350/kWh by 2020
- Improvement in economies of scale and manufacturing
- Improvement in mechanical design will help manufacturing
- Improvements in performance (durability, power density) etc.) and range

¹State of charge window, is the available capacity in a battery relative to its capacity when full. Conservative applications work within a 55% window, whereas more aggressive applications use 80%; over the next 5 to 10 years, most applications will likely migrate to the higher value.

Source: OEM and supplier interviews conducted in Asia, Europe, and North America; McKinsey analysis

Conclusion

Mike Waters, P.E.

Progress Energy

Efficiency & Innovative Technology Department Emerging Technology & Alternative Energy Section

Conclusions

Electricity grid impacts are long term and utility companies have dealt with similar growth 3 times before. Good planning is key;

- 60 yrs ago appliances
- 40 yrs ago air conditioning
- 20 yrs ago electronics

~47%

Conclusions

69% 61% 61% Percentage of Respondents 54% 51% 44% 21% 17% 11% Limited Cost Fit for fleet Charging Charging Battery Ungualified Availability Safety driving range application locations time life costs per charge or load capacity

Factors of Concern Regarding Plug-In Electric Vehicles

Battery technology development is key to address several factors of customer concern

Market penetration forecasts are all over the map. However 3 factors could play a key role:

- Government incentives
- Rising fuel economy requirements and gas prices
- Automakers introducing PEVs. 108 PEV models will be introduced by 2015.

Significant effort is currently underway in the US in preparation for the arrival of PEVs

US Gets Ready for PEVs

Plug-In Road Map | A sampling of efforts around the nation to get ready for electric cars

Source: Charging Ahead, The Wall Street Journal, May 10th 2010.

Source: WSJ reporting

Questions?

www.GoElectricDrive.com

Appendix

PEV Economics

Source: Environmental, Security, and Economic Issues of Electricity as a Transportation Fuel Constantine Samaras March 15, 2010